S. No.	Name of Laboratory	Area (Sq. Ft.)	Incharge
1.	Concrete Technology Lab	2000	Jagbir Singh
2.	Environmental Engineering Lab	1370	Puneet Pal Singh Cheema
3.	Strength of Materials Lab	1200	Jagbir Singh
4.	Geotechnical Engineering Lab	1500	Gurdeepak Singh
5.	Transportation Lab	600	Prashant Garg
6.	Structure Lab	1200	Inderpreet Kaur
7.	Computational Lab	900	Hardeep Singh Rai
8.	Survey Lab	1500	Gurpuneet Singh
9.	Advance Computational Lab	170	Hardeep Singh Rai
10.	Heavy Testing Lab	2200	Harvinder Singh
11.	Model Lab	750	Bhupinder Singh
11.	Advance Environmental Engg. Lab	400	Sukhwinderpal Singh

Civil Engineering Laboratories

	ENVIRONMENTAL ENGG. LAB						
	ADVANCED ENVIRONMENTAL ENGG. LAB						
S. NO.	NAME OF EQUIPMENT	APPLICATION					
1	pH Meter	To measure the pH value of a water/waste water sample.					
2	Jar Apparatus	To determine optimum Alum dose for Coagulation.					
3	MEL-MF Lab	To find MPN for the bacteriological examination of water.					
4	Turbidity Meter	To find the turbidity of a given waste water/water sample.					
5	BOD Track	To find B.O.D. of a given waste water sample.					
6	LDO Probe	To measure D.O. of a given water sample					
7	Spectrophotometer	To determine the concentration of sulphates in water/wastewater sample.					
8	Spectrophotometer & COD Digestion	To determine the COD of a wastewater sample.					
9	ION Chromatograph	Determination of fluorides in water sample.					
10	Colour Kit	To determine the concentration of colour in a water sample or a wastewater sample.					
11	Atomic Absorption Spectrometer	Determination of iron concentration in a water / industrial wastewater sample.					
12	TKN Analyzer	Determination of Total Nitrogen in wastewater and protein content in food products.					

Equipr	Purchas	se			
Name Make		Date	Cost in lac (Rs.)	Installation Date	Present Condition
Muffle Furnace	Lab India	15-10-2017	0.58	16-10-2017	Working
Ion Chromatograph	METROHM	05-05-2014	15.96	06-03-2014	Working
Ultrapure Water Purification System	BIO-AGE	14-02-2014	1.94	14-02-2014	Working
UV-Visible Scanning Spectrophotometer	AGILENT TECHNOLOGIES	30-12-2013	5.27	13-02-2014	Working

BOD/DO meter	НАСН	30-12-2013	1.20	28-02-2014	Working
Multi-parameter Meter	НАСН	30-12-2013	0.99	28-02-2014	Working
Digestion Block	НАСН	30-12-2013	0.82	28-02-2014	Working
Flame Photometer	ELICO	30-12-2013	0.62	04-02-2014	Working
pH/ISE meter	EUTECH	30-12-2013	0.53	28-02-2014	Working
Atomic Absorption Spectrometer	AGILENT TECHNOLOGIES	11-05-2013	12.94	13-02-2014	Working
Turbidity Meter	LOVIBOND	25-12-2010	0.37	25-12-2010	Working
Jar Test Apparatus	POPULAR TRADERS	25-12-2010	0.27	25-12-2010	Working
Color Test Kit	НАСН	17-12-2010	0.89	17-12-2010	Working
Digital Spectrometer	НАСН	20-11-2007	1.95	20-11-2007	Working
MEL-MF lab	НАСН	20-11-2007	2.34	20-11-2007	Working
Multiparameter Meter	НАСН	20-11-2007	0.74	20-11-2007	Working
BOD Track	НАСН	15-07-2003	1.61	15-07-2003	Working
Digital balance	CITIZEN	15-07-2003	0.74	15-07-2003	Working

	CONCRETE TECH. LAB					
S. NO.	NAME OF EQUIPMENT	APPLICATION				
1	Le-Chatelier Flask And Apparatus	To Determine the Specific Gravity and Soundness of cement				
2	Vicat Apparatus & Set Of Needles, Compression Testing Machine	To Determine the Standard Consistency, Initial and Final Setting Times of Cement and Compressive Strength of Cement.				
3	Set Of Sieves & Shaker, Hot Air Oven, Pycnometer	To Determine the Fineness Modulus, Bulk Density, Water Absorption and Specific gravity of Fine and Coarse Aggregates.				
4	Slump Cone, Compaction Factor Apparatus, Vee-Bee Consistometer	To Determine the Slump, Compaction Factor and Vee-Bee Time of Concrete.				
5	Drum/Pan Mixer, Weighing Machine, Constant Temperature Water Bath, And Compression Testing Machine.	Mix Design of Concrete by IS methods				
6	Compression Testing Machine	To Determine the Compressive Strength of Concrete by Cube and Cylinder.				
7	Compression Testing Machine & Beam Testing Machine	To carry out the Split Tensile and Flexural strength of Concrete.				
8	Compression Testing Machine	Compressive strength of Brick and Tile as per IS standard.				
9	Core Cutter & Grinder, Compression Testing Machine	To find out the core testing of concrete.				
10	Mixer	To find out the suitability/quality of concrete admixtures.				
11	Constant Temperature Water Bath	To find the water absorption of concrete.				
12	Concrete Permeability Apparatus	To find the permeability of concrete.				

Equipment		Purchas	se		
Name	Make	Date	Cost in lac (Rs.)	Installation Date	Present Condition
Corrosion Analyzing Instrument with Software	PROCEQ	01-10-2014	6.67	02-12-2014	Working
Accelerated Curing Tank	AIMIL	01-10-2014	2.79	28-01-2014	Working
Concrete Crack Microscope		01-10-2014	0.69	01-10-2014	Working
Concrete Cutter	AIMIL	01-03-2014	2.25	27-01-2014	Working
LVDT (6 No.)	AIMIL	01-03-2014	1.69	01-03-2014	Working
Signal Conditioner For datalogger	AIMIL	01-03-2014	0.51	22-01-2014	Working
Ultrasonic Pulse vel testing	PROCEQ	09-10-2013	3.77	09-10-2013	Working
Tile Abrasion Testing Machine	AIMIL	09-10-2013	1.47	10-05-2013	Working
Concrete Permeability Apparatus	AIMIL	09-10-2013	1.42	25-09-2013	Working
Accelerated Carbonation Chamber		10-05-2013	6.73	28-10-2013	Working
Automatic Baline's Apparatus	AIMIL	10-05-2013	1.26	18-10-2013	Working
PAN mixer	AIMIL	20-04-2012	1.45	20-04-2012	Working
Rebound hammer (digital)	PROCEQ	03-09-2010	1.50	03-09-2010	Working
Concrete core cutter	ROTHENBERGER	01-05-2009	3.25	01-05-2009	Working
Compression Testing Machine (Digital) 200t	HEICO	19-04-2007	2.25	19-04-2007	Working
Ultrasonic pulse velocity equipment	PUNDIT	30-11-1988	2.00	01-12-1989	Working
Electronic cyclic loading unit (100t)	HEICO	04-08-1988	2.60	06-10-1988	Working
Universal Testing Machine, 100t	PRECISION	25-03-1987	2.54	25-05-1987	Working

	SOM LAB				
S. NO.	NAME OF EQUIPMENT	APPLICATION			
1	Universal Testing Machine	Draw Stress Strain curve for Ductile and Brittle material in tension.			
1		To draw load deflection curve of steel members of various sections.			
		Draw Stress Strain curve for Ductile and Brittle material in compression.			
2	Compression Testing Machine	To test a mild steel and cast iron specimen in double shear.			
		To find the compressive strength of CI,MS and and comparison of their failure patterns.			
3	Torsion Testing Machine	Draw shear stress, shear strain curve for ductile and brittle material in torsion strength testing			
4	Rockwell Cum Brinnel Hardness Testing Machine	To determine the hardness of the given material by Rockwell and Brinell hardness testing machine.			
5	Fatigue Testing Machine	To determine the fatigue strength of the material.			
6	Izod and Charpy Machine	To determine the impact strength by Izod and Charpy test.			
7	Beam Testing Machine	To find the flexural strength of beam made of concrete,wood,steel.			

Equipment		Purchase			
Name	Make	Date	Cost in lac (Rs.)	Installation Date	Present Condition
Compression Testing Machine (Digital) 200t	HEICO	19-04-2007	2.25	19-04-2007	Working
Compression Testing Machine (Digital)	ASI	14-02-2000	2.07	18-05-2000	Working

Digital compression testing machine (40t)	ASI	20-03-1999	3.75	30-05-1999	Working
Electronic cyclic loading unit (100t)	HEICO	04-08-1988	2.60	06-10-1988	Working
Universal Testing Machine, 100t	PRECISIO N	25-03-1987	2.54	25-05-1987	Working

	STRUCTURE ANALYSIS LAB				
<i>S.</i> <i>NO</i> .	NAME OF EQUIPMENT	APPLICATION			
		Deflection of a simply supported beam and verification of Clark-Maxwell's theorem. To determine the Flexural Rigidity of a given			
		beam.			
1	Simply Supported Beam Apparatus	To verify the Moment- area theorem for slope and deflection of a given beam.			
		To verify the conjugate beam method for slope and deflection of a simply supported beam.			
		To verify unit load method for slope and deflection of a simply supported beam.			
2	Elastic Properties Of Deflected Beam Apparatus	Deflection of a fixed beam and influence line for reactions.			
3	Continuous Beam Apparatus	Deflection studies for a continuous beam and influence line for reactions.			
4	Columns And Struts Apparatus	Study of behaviour of columns and struts with different end conditions.			
5	Three-Hinged Arch Apparatus	Experiment on three-hinged arch.			
6	Two-Hinged Arch Apparatus	Experiment on two-hinged arch.			
7	Deflection Of Truss Apparatus	Deflection of a statically determinate pin jointed truss.			
8	Rigid Jointed Frame Model	Forces in members of redundant frames.			
9	Curved Beam Apparatus	Experiment on curved beams.			

10	Unsymmetrical Bending Apparatus	Unsymmetrical bending of a cantilever beam.
11	Deflection Of Beam Apparatus	Deflection of a fixed end beam and verification of Clark-Maxwell's theorem.

	SURVEY LAB				
S. NO.	NAME OF EQUIPMENT	APPLICATION			
1	Chain, Metallic Tape, Ranging Rods, Arrows	Measurement of distance, ranging a line.			
2	Prismatic compass With stand, Ranging Rods	Measurement of bearing and angles with compass, adjustment of traverse by graphical method.			
3	Levelling Instrument with stand, Levelling Staff	Different methods of leveling, height of instrument, rise & fall methods.			
4	Theodolite with Stand, ranging rods	Measurement of horizontal and vertical angle by theodolite.			
5	Tacheometer with stand, levelling staff	Determination of tachometric constants and determination of reduced levels by tachometric observations.			
6	Plane table, aledade, U-fork, Ranging rods	Plane table survey, different methods of plotting, two point & three point problem.			
7	Theodolite with stand, levelling staff	Determination of height of an inaccessible object.			
8	Theodolite with stand, chain, measuring tape,arrows	Setting out a transition curve. Setting out of circular curves in the field using different methods.			
9	Total Station with stand, reflecting prism	Study of total station.			
10	GPS receiver	Study of GPS.			

Equipmo	ent	Purchase			
Name	Make	Date	Cost in lac (Rs.)	Installation Date	Present Condition
Total Station	SOKKIA	03-06-2013	2.95	03-08-2013	Working
Total Station	SOKKIA	02-01-2007	5.53	02-01-2007	Working
Digital Theodolite	NIKON	31-07-1989	1.01	31-07-1989	Working

	TRANSPORTATION ENGG. LAB			
<i>S. NO</i> .	NAME OF EQUIPMENT	APPLICATION		
1	CBR test apparatus	California Bearing Ratio Test		
2	Universal Testing Machine (SOM lab)	Crushing Value Test		
3	Los Angles Abrasion Machine	Los Angles Abrasion Value Test		
4	Impact Value Test Apparatus	Impact Value Test		
5	Elongation Gauge	Shape Test (Flakiness and Elongation Index)		
6	Penetrometer	Penetration Test		
7	Ductility Machine	Ductility Test		
8	Ring & Ball Apparatus	Softening Point Test		
9	Flash & fire test apparatus	Flash & Fire Point Test		
10	Bitumen Extraction Machine	Bitumen Extraction Test		
11	Roughometer	Roughness Measurements Test		
		Benkelman Beam Pavement Deflection Test		
12	Benkleman Beam Apparatus	Benkelman's Beam Method for the design of overlays		
13	Plate load test	To determine the subgrade modulus for sub- base supporting flexible & rigid pavements		

Equipment	ment Purchase		ase			
Name	Make	Date	Cost in lac (Rs.)	Installation Date	Present Condition	
Light Weight Deflection Meter	AIMIL	30-12-2013	13.95	20-01-2014	Working	
Rougho-meter	HEICO	12-10-2007	1.30	12-10-2007	Working	
CBR test apparatus	HEICO	11-11-2006	1.90	11-11-2006	Working	
Marshall Stability and Benkelman Beam	HEICO	11-11-2006	1.03	11-11-2006	Working	

	GEOTECHNICAL ENGG. LAB				
S. NO.	NAME OF EQUIPMENT	APPLICATION			
1	Core Cutter Apparatus & sand replacement apparatus	Determination of in-situ density by core cutter method and Sand replacement method.			
2	Casagranda apparatus	Determination of Liquid Limit & Plastic Limit.			
3	Pyconometer	Determination of specific gravity of soil solids by pyconometer method.			
4	Sieve Set & Sieve Shaker	Grain size analysis of sand and determination of uniformity coefficient (Cu) and coefficient of curvature (Cc).			
5	Procter test apparatus	Compaction test of soil.			
6	Relative density apparatus	Determination of Relative Density of soil.			
7	Unconfined Compression Test apparatus	Unconfined Compression Test for fine grained soil.			
8	Direct Shear test apparatus	Direct Shear Test			
9	Triaxial Test apparatus	Triaxial Test			
10	Swell pressure meter	Swell Pressure Test			
11	Plate Load Test Apparatus	Plate Load test			

Equipment		Purch	ase			
Name	Make	Date	Cost in lac (Rs.)	Installation Date	Present Condition	
Pressure meter	AIMIL	01-04-2014	9.06	20-01-2014	Working	
Triaxial Shear Apparatus	HEICO	11-11-2006	5.70	11-11-2006	Working	
CBR test apparatus	HEICO	11-11-2006	1.90	11-11-2006	Working	

COMPUTATIONAL LABORATORY

Major Ec	Major Equipments in the Laboratory (Costing > Rs. 50,000)				
S No	Equipment	Make	No	Cost in lac(Rs)	
1	Desktop	Hp Desktop 512 MB RAM	36	12.46	
2	Desktop	Hp Desktop 2GB RAM	4	1.90	
3	PLOTTER	HP DESIGN JET 500	1	1.25	
4	COPIER	RICOH AFICIO MP 2000 L2	1	0.83	
5	PLOTTER	EPSON STYLUS PRO 9700	1	2.15	

ADVANCE COMPUTATIONAL LABORATORY

Major	Major Equipments in the Laboratory (Costing > Rs. 50,000)				
S No	Equipment	Make	No	Cost in lac(Rs)	
1	Desktop	ACER	6	2.36	
2	NOTEPAD	TOSIHBA	15	6.10	
3	LAPTOP	DELL VOSTRO -1520	6	2.63	

List of Licensed Software				
S No	SOFTWARE	No of Licenses	Cost in lac (Rs)	
1	AUTOCAD 2D	1	0.25	
2	BUILDING ESTIMATOR	1	0.28	
3	NUCLEUS	1	0.28	
4	AUTOCAD 3D	1	0.30	
5	GEOTEKH SOFTWARE SOLUTION (GSS)	1	0.56	
List of	f Licensed Software (Costing > F	Rs. 50,000)		
6	G.T. STRUDAL	5	1.10	
7	STADD PRO v8i	1	1.19	
8	GEOMATICS	1	1.56	
9	Geo-5	1	1.71	
10	ANSYS	1	3.16	
11	PLAXIS-2D	1	3.75	

PLAXIS-3D (TEQIP)	1	9.8	
-------------------	---	-----	--

HEAVY TESTING LABORATORY

Major Equipments in the Laboratory (Costing > Rs. 50,000)				
S No	EQUIPMENT	Cost (Rs)		
1	Multipurpose reaction frame with rated capacity: Vertical load = $100t$ and horizontal load = $50 t$			
2	Data Acquisition system			
3	Transducers different capacities (load cells = 100, 50, 25, 10, 5t and LVDTs= 200, 150, 100, 75, 25mm)	26 lac		
4	Test tank for testing footings			
5	Hopper for tank filling			
6	Accessories for testing of full scale slabs, beams, footing specimens.			
7	High Temperature Furnace (rated Capacity 1000°)	2.10 lac		
8	Displacement controlled UTM	14.00 Lac		

Model Lab

List of Models in lab

- 1. RAILWAY BRIDGE MODEL
- 2. COFFER DAM
- 3. TRUSS JOINT SYPHON AQUEDUCT
- 4. GRAVITY DAM
- 5. DISTRIBUTARY HEAD REGULATOR
- 6. SARDA TYPE FALL/WEIR
- 7. RIVER HEAD WORK
- 8. CANAL DROP

- 9. CLOVER LEAF
- 10. CANAL INTAKE FOR WATER SUPPLY
- 11. GATE CONTROL WORKS
- 12. MODERN PARKING SYSTEM
- 13. SPACE FRAME
- 14. CROSS SECTION OF DOUBLE STORY BUILDING SHOWING SANITORY
- 15. ARANGEMENT
- 16. MODEL OF HOUSE
- 17. WOODEN TRUSS
- 18. POINTS AND CROSSING OF RAIL LINE
- 19. CLARIFLOCCULATOR
- 20. RAPID SAND FILTER
- 21. PRESSURE FILTER
- 22. ARCH BRIDGE
- 23. PLATE GIRDER BRIDGE
- 24. SUSPENSION CABLE BRIDGE MODEL
- 25. JUNCTION STEEL COLUMN BASE
- 26. LONDON BRIDGE
- 27. GEOLOGICAL MAP
- 28. IMHOFF TANK
- 29. SEPTIC TANK
- **30. MINERALS**
- **31. CONNECTION**
- 32. NOT IN USE
- 33. PARKING SYSTEM
- 34. STRUCTURE MODEL
- 35. CROSS SECTION OF DOUBLE STORY BUILDING SHOWING SANITORY FITTING