Guru Nanak Dev Engineering College, Ludhiana Civil Engineering Department M.Tech. (Structural Engineering)

Program Outcomes (POs):

After completion of the program graduates will be able to

- 1. Apply the knowledge of science, mathematics, and engineering principles for developing problem solving attitude.
- 2. Identify, formulate and solve engineering problems in the domain of structural engineering field.
- 3. Use different software tools for Analysis and Design structural engineering domain.
- 4. Design and conduct experiments, analyze and interpret data, for development of simulation experiments.
- 5. Function as a member of a multidisciplinary team with sense of ethics, integrity and social responsibility.

First Semester									
Course	Course Code	Course Name	Load Allocations			D	Maı istrib	Credits	
Туре			L	Т	P	Int	Ext	Total Marks	
Core Theory	MST-101	Advanced Structural Analysis	3	0	0	50	100	150	3
Core Theory	MST-102	Finite Element Method in Structural Engineering	3	0	0	50	100	150	3
Elective	MST- AAA	Program Elective I	3	0	0	50	100	150	3
Elective	MST-BBB	Program Elective II	3	0	0	50	100	150	3
Core Lab I	LMST-101	Structural Design Lab	0	0	4	50	50	100	2
Core Lab II	LMST-102	Advanced Concrete Technology Lab	0	0	2	50	50	100	1
MLC	MRM-101	Research Methodology and IPR	3	0	0	50	100	150	3
Audit 1	MAC-102	Disaster Management	2	0	0	50	-	50	0
		Total	17	0	6	400	600	1000	18

Second Semester

Course Type	Course Code	Course Name	Load Allocations			D	Maı istrib	Credits	
			L	Т	P	Int	Ext	Total Marks	
Core Theory	MST-103	Advanced Solid Mechanics	3	0	0	50	100	150	3
Core Theory	MST-104	Structural Dynamics	3	0	0	50	100	150	3
Elective	MST- CCC	Program Elective III	3	0	0	50	100	150	3
Elective	MST- DDD	Program Elective IV	3	0	0	50	100	150	3

		Total	14	0	10	400	550	950	17
Audit 2	MAC-101	English for research report / paper writing	2	0	0	50	1	50	0
Core	LMPST-101	Project	0	0	4	50	50	100	2
Core Lab IV	LMST-104	Numerical Analysis Lab	0	0	4	50	50	100	2
Core Lab III	LMST-103	Model Testing Lab	0	0	2	50	50	100	1

Third Semester

Course Type	Course Code	Course Name	Load Allocations			D:	Mar istrib		
			L	Т	P	Int	Ext	Total Marks	Credits
Elective	MST-EEE	Program Elective V	3	0	0	50	100	150	3
Open Elective	MOST- XXX	Open Elective	3	0	0	50	100	150	3
Pre-thesis	MPTST-101	Formulation of Research Problem	0	0	2*+ 18**	100	100	200	10
		Total	6	0	20	200	300	500	16

Fourth Semester

		Course Name	Load Allocations			D	Mar istrib		
Course Type	Course Code		L	Т	P	Int	Ext	Total Marks	Credits
Thesis	MTST-101	Thesis	0	0	4*+ 28**	100	200	300	16
		Total	0	0	32	100	200	300	16

^{*} Max hours for teacher

^{**} Independent study hours

List of Electives								
S. No.	Course Name	Course Code						
1	Theory of Thin Plates and Shells	MST – 111						
2	Theory of Structural Stability	MST – 112						
3	Theory and applications of cement composites	MST – 113						
4	Structural Optimization	MST – 114						
5	Structural Health monitoring & Retrofitting	MST – 115						
6	Bridge Engineering	MST – 116						
7	Design of High Rise Structures	MST – 117						
8	Design of Masonry Structures	MST – 118						
9	Advanced Steel Structural Design	MST – 119						
10	Advanced Design of Foundations	MST – 120						
11	Industrial Structures	MST – 121						
12	Soil-structure Interactions	MST – 122						
13	Advanced Concrete Structural Design	MST – 123						
14	Pre-stressed Concrete Structures	MST – 124						
15	Fracture Mechanics of Concrete	MST – 125						
16	Design of Plates and Shells	MST – 126						

MST-101 Advanced Structural Analysis

(Credits -3:0:0=3)

Teaching Scheme Lectures: 3 hrs/week Course Outcomes:

On completion of the course, the student will have the ability to:

- 1. Develop Stiffness and flexibility matrices for skeletal structural systems
- 2. Analyze and evaluate the response of skeletal structural systems using force method.
- 3. Analyze and evaluate the response of skeletal structural systems using displacement method.
- 4. Apply member approach for analyzing higher order skeletal structural systems
- 5. Illustrate the use of matrix methods for analyzing skeletal structural systems subjected to secondary stresses due to lack of fit, temperature change and differential settlement
- 6. Comprehend and apply finite element approach for solving boundary value problems

Syllabus Content:

- Application of Stiffness and Flexibility Methods: Stiffness Matrix and Flexibility matrix in Local & Global Coordinates, Boundary Conditions, Solution of Matrix Equations, Calculation of Reactions and Member Forces; Analysis of Beams, Trusses, Rigid-Jointed Frames and Grids using the Structure Approach and the Member Approach
- **Influence Coefficients:** Physical Significance and use in structural analysis & design, their deviation for different structural elements/members; Effects of support settlements, Temperature change and Lack of Fit using the Member Approach and the Structure Approach
- Boundary Value Problems: Approximate Solution of Boundary Value Problems, Modified Galerkin Method for One-Dimensional problems, Matrix Formulation of the Modified Galerkin Method and its applications

- 1. Matrix Analysis of Framed Structures, Weaver W, and Gere J. M., Van Nostrand Reinhold Company
- 2. Structural Analysis A Matrix Approach, Pandit G.S. and Gupta S. P., Tata McGraw Hill
- 3. The Finite Element Method, Lewis P. E. and Ward J. P., Addison-Wesley Publication Co.
- 4. Computer Methods in Structural Analysis, Meek J. L., CRC Press
- 5. Introduction to Finite Element Method, Desai and Able, CBS Publishers

MST-102 Finite Element Method in Structural Engineering

(Credits- 3:0:0 = 3)

Teaching Scheme Lectures: 3 hrs/week Course Outcomes:

On completion of the course, the student will have the ability to:

- 1. Learn elemental stiffness technique
- 2. Formulate finite element equation, equilibrium equation.
- 3. Apply the concepts of Finite Element Formulation and loads
- 4. Learn computer applications of FEM.

Syllabus Content:

- Introduction: History and Applications. Spring and Bar Elements, Minimum Potential Energy Principle, Direct Stiffness Method, Nodal Equilibrium equations, Assembly of Global Stiffness Matrix, Element Strain and Stress
- **Beam Elements:** Flexure Element, Element Stiffness Matrix, Element Load Vector.
- **Method of Weighted Residuals:** GalerkinFinite Element Method, Application to Structural Elements, Interpolation Functions, Compatibility and Completeness Requirements, Polynomial Forms, Applications.
- **Types**:Triangular Elements, Rectangular Elements, Three-Dimensional Elements, Isoparametric Formulation, Axi-Symmetric Elements, Numerical Integration, Gaussian Quadrature.
- **Application to Solid Mechanics:** Plane Stress, CST Element, Plane Strain Rectangular Element, Isoparametric Formulation of the Plane Quadrilateral Element, Axi- Symmetric Stress Analysis, Strain and Stress Computations.
- Computer Implementation of FEM procedure, Pre-Processing, Solution, Post-Processing, Use of Commercial FEA Software.

- 1. Finite Element Analysis, Seshu P., Prentice-Hall of India
- 2. Concepts and Applications of Finite Element Analysis, Cook R. D., Wiley J., New York
- 3. Fundamentals of Finite Element Analysis, Hutton David, Mc-Graw Hill
- 4. Finite Element Analysis, Buchanan G.R., McGraw Hill Publications, New York
- 5. Finite Element Method, Zienkiewicz O.C. & Taylor R.L. Vol. I, II & III, Elsevier
- 6. Finite Element Methods in Engineering, Belegundu A.D., Chandrupatla, T.R., Prentice Hall India

MST-103 Advanced Solid Mechanics

(Credits -3:0:0=3)

Teaching Scheme Lectures: 3 hrs/week Course Outcomes:

On completion of the course, the student will have the ability to:

- 1. Develop stress and strain tensors and perform transformations.
- 2. Solve the advanced practical problems related to the theory of elasticity, concepts of stress and strain, strain energy.
- 3. Learn about the elastic and plastic behavior of material and evaluate stress invariants, principal stresses and their directions and determine strain invariants, principal strains and their directions.
- 4. Develop constitutive relationships between stress and strain for linearly elastic solid.
- 5. Understand the concept of stresses and strains in 2D
- 6. Know the different theories for Torsion.

Syllabus Content:

- **Elasticity:** Displacement, Strain and Stress Fields, Constitutive Relations, Cartesian Tensors and Equations of Elasticity
- **Strain and Stress Field:** Elementary Concept of Stress and Strain at a Point; Principal Axes; Principal stresses and Strains; Compatibility Conditions; Stress Components on an Arbitrary Plane; Differential Equations of Equilibrium, Hydrostatic and Deviatoric Components.
- **Equations of Elasticity:** Equations of Equilibrium, Stress-Strain relations, Strain Displacement and Compatibility Relations, Co-axiality of the Principal Directions.
- **Two-Dimensional Problems of Elasticity:** Plane Stress and Plane Strain Problems, Airy's stress Function, Use of Airy's function in beam analysis; Two-Dimensional Problems in Polar Coordinates
- **Torsion of Prismatic Bars:** Saint Venant's Method, Prandtl's Membrane Analogy, Torsion of Rectangular Bar, Torsion of Thin Tubes
- **Plastic Deformation:** Strain Hardening, Idealized Stress- Strain curve, Yield Criteria, von-Mises Yield Criterion, Tresca Yield Criterion, Plastic Stress-Strain Relations, Principle of Normality and Plastic Potential, Isotropic Hardening.

- 1. Theory of Elasticity, Timoshenko S. and Goodier J. N., McGraw Hill
- 2. Elasticity, Sadd M.H., Elsevier
- 3. Engineering Solid Mechanics, Ragab A.R.and Bayoumi S.E., CRC Press
- 4. Computational Elasticity, Ameen M., Narosa
- 5. Solid Mechanics, KazimiS. M. A., Tata McGraw Hill
- 6. Advanced Mechanics of Solids, Srinath L. S., Tata McGraw Hill

MST – 111 Theory of Thin Plates and Shells

(Credits -3:0:0=3)

Teaching Scheme Lectures: 3 hrs/week Course Outcomes:

On completion of the course, the student will have the ability to:

- 1. Plate equation in Cartesian and polar coordinates
- 2. Analyze rectangular and circular plates with different boundary conditions and loads
- 3. Apply the concepts rectangular and circular plates with different boundary conditions and loads.
- 4. Analyze the shells.

Syllabus Content:

- **Introduction:** Space Curves, Surfaces, Shell Co-ordinates, Strain Displacement Relations, Assumptions in Shell Theory, Displacement Field Approximations, Stress Resultants, Equation of Equilibrium using Principle of Virtual Work, Boundary Conditions.
- Static Analysis of Plates: Governing Equation for a Rectangular Plate, Navier Solution for Simply-Supported Rectangular Plate under Various Loadings, Levy solution for Rectangular Plate with other Boundary Conditions
- **Circular Plates:** Analysis under Axi- Symmetric Loading, Governing Differential Equation in Polar Co-ordinates. Approximate Methods of Analysis- Rayleigh-Ritz approach for Simple
- Cases in Rectangular Plates
- Static Analysis of Shells: Membrane Theory of Shells Cylindrical, Conical and Spherical Shells
- Shells of Revolution with Bending Resistance Cylindrical and Conical Shells, Application to Pipes and Pressure Vessels
- Thermal Stresses in Plate/ Shell

- 1. Theory of Plates and Shells, Timoshenko S. and Krieger W., McGraw Hill.
- 2. Stresses in Plates and Shells, Ugural Ansel C., McGraw Hill.
- 3. Thin Elastic Shells, Kraus H., John Wiley and Sons.
- 4. Theory of Plates, Chandra S. K.., Universities Press.
- 5. Design and Construction of Concrete Shells, Ramaswamy G.S.

MST - 112 Theory of Structural Stability

(Credits- 3:0:0 = 3)

Teaching Scheme Lectures: 3 hrs/week Course Outcomes:

On completion of the course, the student will have the ability to:

- 1. Learn the basic requirements of structural design, including stability in addition to strength and stiffness. Understand the classical concept of stability of discrete and continuous systems, linear and nonlinear behaviour.
- 2. Determine the buckling loads for simple columns by analytical solution. Have appreciation of combined axial, flexural and torsion buckling.
- 3. Investigate stability of frames with respect to member buckling and global buckling. Find slenderness ratio of frame members.
- 4. Study stability of beams with respect to lateral torsion buckling.
- 5. Study the stability of plates like axial flexural buckling, shear flexural buckling, buckling under combined loads.
- 6. An appreciation of the fundamental basis of design rules concerned with structural instability.

Syllabus Content:

- Criteria for Design of Structures: Stability, Strength, and Stiffness, Classical Concept of Stability of Discrete and Continuous Systems, Linear and nonlinear behaviour.
- **Stability of Columns:** Axial and Flexural Buckling, Lateral Bracing of Columns, Combined Axial, Flexural and Torsion Buckling.
- Stability of Frames: Member Buckling versus Global Buckling, Slenderness Ratio of Frame Members.
- Stability of Beams: lateral torsion buckling.
- **Stability of Plates:** axial flexural buckling, shear flexural buckling, buckling under combined loads.

- 1. Theory of elastic stability, Timoshenko and Gere, Tata Mc Graw Hill
- 2. Principles of Structural Stability Theory, Alexander Chajes, Prentice Hall.
- 3. Structural Stability of columns and plates, Iyengar, N. G. R., Eastern West Press Pvt. Ltd.
- 4. Strength of Metal Structures, Bleich F. Bucking, Tata McGraw Hill.

MST-113 Theory and Applications of Cement Composites

(Credits- 3:0:0=3)

Teaching Scheme Lectures: 3 hrs/week Course Outcomes:

On completion of the course, the student will have the ability to:

- 1. Know different types of composite materials and their importance, utility
- 2. Classify these materials based upon the engineering properties and behavior
- 3. Learn about the construction / production techniques and behavior of materials
- 4. Use different available material models in the analysis and response prediction
- 5. Design structural members using the composite materials
- 6. Explore different application areas of composites

Syllabus Content:

- **Introduction:** Classification and Characteristics of Composite Materials- Basic terminology, Advantages & uses; Orthotropic and Anisotropic Materials; Engineering Constants for Orthotropic Materials, Restrictions on Elastic Constants, Theories for an Orthotropic Lamina.
- **Cement Composites:** Constituent Materials and their Properties; Fibre Reinforced Concrete, Ferrocement, SIFCON, Polymer Concretes; Construction Techniques, Preparation of Reinforcement, Casting and Curing.
- Mechanical Behaviour & Material Models: Mechanics of cement composite materials; Different material models and their developments; Review of different available models and their applications; Behavior of Fiber Reinforced Concrete and Ferrocement in Tension, Compression, Flexure, Shear, Fatigue and Impact, Durability and Corrosion
- Analysis and Design of Cement Composite Structural Elements: Ferrocement, SIFCON and Fibre Reinforced Concrete
- **Application of Cement Composites:** Fiber Reinforced Concrete and Ferrocement- Housing, Water Storage, Boats and Miscellaneous Structures.

- 1. Mechanics of Composite Materials, Jones R. M, 2nd Ed., Taylor and Francis, BSP Books
- 2. Ferrocement Theory and Applications, Pama R. P., IFIC
- 3. New Concrete Materials, Swamy R. N., 1st Ed. Blackie, Academic and Professional, Chapman & Hall

MST-114 Structural Optimization

(Credits -3:0:0=3)

Teaching Scheme Lectures: 3 hrs/week Course Outcomes:

On completion of the course, the student will have the ability to:

- 1. Conceptualize and formulate an optimization research problem.
- 2. Understand the difference between classical and advanced optimization methodologies.
- 3. Select a methodology for carrying out optimization on a research problem.
- 4. Solve optimization problems using various techniques.
- 5. Perform optimization on a problem having single objective or multi-objectives.
- 6. Optimize a structural member under optimal conditions.

Syllabus Content:

- **Introduction:** Historical Development; Engineering applications of Optimization; Art of Modeling; Objective function; Constraints and Constraint surface; Formulation of design problems as mathematical programming problems; Classification of optimization problems; Optimization techniques classical and advanced techniques.
- **Optimization using Calculus:** Stationary points; Functions of single and two variables; Global Optimum; Convexity and concavity of functions of one and two variables; Optimization of function of one variable and multiple variables; Gradient vectors; Optimization of function of multiple variables subject to equality constraints;
- **Linear Programming:** Standard form of linear programming (LP) problem; Canonical form of LP problem; Assumptions in LP Models; Elementary operations; Graphical method for two variable optimization problem; Simplex algorithm and construction of simplex tableau;
- Dynamic Programming: Sequential optimization; Representation of multistage decision process;
 Types of multistage decision problems; Concept of sub optimization and the principle of optimality;
 Recursive equations Forward and backward recursions; Computational procedure in dynamic programming; Discrete versus continuous dynamic programming.
- **Integer Programming:** Integer linear programming; Concept of cutting plane method
- Applications: Structural Steel and Concrete Members

- 1. Elements of Structural Optimization, Haftka, Raphael T., Gürdal, Zafer, Springer.
- 2. Variational Methods for Structural Optimization, Cherkaev Andrej, Springer

MST-115 Structural Health Monitoring and Retrofitting

(Credits -3:0:0=3)

Teaching Scheme Lectures: 3 hrs/week Course Outcomes:

On completion of the course, the student will have the ability to:

- 1. Understand the fundamentals of monitoring the structural health and its maintenance strategies.
- 2. Diagnose for serviceability and durability aspects of concrete.
- 3. Know the various techniques for Static and Dynamic Field Testing.
- 4. Decide the appropriate repair, strengthening, rehabilitation and retrofitting technique required for a case study building.
- 5. Use the modern techniques for Structural Heath Monitoring
- 6. Use an appropriate health monitoring technique and demolition technique.

Syllabus Content:

- Structural Health: Factors affecting Health of Structures, Causes of Distress, Regular Maintenance
- **Structural Health Monitoring:** Concepts, Various Measures, Structural Safety in Alteration
- **Structural Audit:** Assessment of Health of Structure, Collapse and Investigation, Investigation Management, SHM Procedures.
- **Static Field Testing:** Types of Static Tests, Simulation and Loading Methods, sensor systems and hardware requirements, Static Response Measurement.
- **Dynamic Field Testing:** Types of Dynamic Field Test, Stress History Data, Dynamic response Methods, Hardware for Remote Data Acquisition Systems, Remote Structural Health Monitoring.
- **Introduction to modern techniques:** Piezo—electric materials and other smart materials, electro—mechanical impedance (EMI) technique, adaptations of EMI technique.

- 1. Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons
- 2. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons
- 3. Structural Health Monitoring and Intelligent Infrastructure, Vol.1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group
- 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc.

MST-116 Bridge Engineering

(Credits -3:0:0=3)

Teaching Scheme Lectures: 3 hrs/week Course Outcomes:

On completion of the course, the student will have the ability to:

- 1. Learn bridge classification; selection of a suitable bridge type for a given set of constraints; criterion for deciding their layout; preliminary and detailed investigations *w.r.t.* the traffic and hydraulic design of bridges.
- 2. Understand the various primary loads, load combinations for obtaining a worst design load for the superstructure and substructure system of bridges.
- 3. Apply the concepts of structural design to obtain suitable member sizes/sections of bridges and they will be able to prepare and deliver rough sketches to the draftsman etc.
- 4. Perform the analysis and design of foundations.
- 5. Appreciate the role of modern construction methods and their impact on the analysis and the design of bridge components.
- 6. Perform necessary bridge inspection/maintenance and their rehabilitation.

Syllabus Content:

- **Introduction:** Definitions, Classification and Components of different bridge types; layout and planning of bridges; Loading.
- **Site investigations:** Preliminary data collection; Selection of appropriate bridge type; Hydraulic design of bridges; Traffic design of bridges
- Analysis and design of superstructure for straight and curved bridge decks -loadings details; specification-reinforced concrete and steel decks, Decks of various types, like slab, hollow and voided slab, beam-slab type, box girder etc.
- Analysis and design of foundations: Shallow foundations (open Foundations), Deep foundationswell foundations and caisson; design and constructional aspects of foundations.
- Latest developments in the bridge technology construction methods for concrete and steel bridgestheir impact on the analysis and the design
- Inspection and maintenance and rehabilitation of bridges

- 1. Bridge Deck Analysis, Pama & Gusens
- 2. Bridge deck Behavior, Edward V. Hambly
- 3. Essentials of Bridge Engineering, D. Johnson Vector

MST-121 Industrial Structures

(Credits -3:0:0=3)

Teaching Scheme Lectures: 3 hrs/week Course Outcomes:

On completion of the course, the student will have the ability to:

- 1. Carry out plastic design of structural elements.
- 2. Analyze the loads & stresses of gantry girder.
- 3. Analyze and design structures using light gauge material.
- 4. Analyze and design steel chimneys, storage structures and industrial building.

Syllabus Content:

- **Steel Gantry Girders:** Introduction, loads acting on gantry girder, permissible stress, types of gantry girders and crane rails, crane data, maximum moments and shears, construction detail, design procedure.
- **Portal Frames:** Design of portal frame with hinge base, design of portal frame with fixed base Gable Structures Lightweight Structures
- **Steel Bunkers and Silos:** Design of square bunker Jansen's andAiry's theories IS Code provisions Design of side plates Stiffeners Hooper Longitudinal beams Design of cylindrical silo Side plates Ring girder stiffeners..
- **Chimneys:** Introduction, dimensions of steel stacks, chimney lining, breech openings and access ladder, loading and load combinations, design considerations, stability consideration, design of base plate, design of foundation bolts, design of foundation.
- **Water Tanks:** Design of rectangular riveted steel water tank Tee covers Plates Stays Longitudinal and transverse beams –Design of staging Base plates Foundation and anchor bolts
- **Design of pressed steel water tank:** Design of stays Joints Design of hemispherical bottom water tank side plates Bottom plates joints Ring girder –Design of staging and foundation.

- 1. Design of Steel Structure, Punmia B. C., Jain Ashok Kr., Jain Arun Kr., 2nd Ed., Lakshmi Publishers
- 2. Design of Steel Structures, Ram Chandra, 12th Ed., Standard Publishers
- 3. Steel Structures Design and Practice, Subramanian N.

LMST-101 Structural Design Lab

(Credits - 0:0:4 = 2)

Teaching Scheme Lab: 4 hrs/week

Course Outcomes:

On completion of the course, the student will have the ability to:

- 1. Understand the planning of multistory building.
- 2. Understand the latest IS code of practice for the design of steel and concrete structural elements.
- 3. Apply the fundamental concepts, techniques in analysis and design of reinforced concrete and steel element.
- 4. Apply the design principles by undertaking multistory building.
- 5. Apply the various codal requirements related to various members.
- 6. Produce structural drawing of detailing of Reinforced Concrete and Steel Elements

Syllabus Content:

Analysis, Design and detailing of multi-storied RC/Steel structures using latest relevant IS codes.

LMST-102 Advanced Concrete Technology Lab

(Credits - 0:0:2 = 1)

Teaching Scheme Lab: 2 hrs/week

Course Outcomes:

On completion of the course, the student will have the ability to:

- 1. Comprehend and illustrate the design requirements of different types of concrete
- 2. Design different grades of concrete mixes as per Indian code requirements
- 3. Design and judge the experiments for evaluating various properties of concrete
- 4. Evaluate and relate various strength test results to judge the requirements of a given concrete type
- 5. Decide and implement suitability of various non-destructive tests methods for evaluating condition of existing concrete structures

List of Experiments/Assignments:

- Concrete mix design for high strength concrete, steel fiber reinforced concrete, self-compacting concrete.
- Study of stress-strain curve of concrete samples (designed and cast as above); Correlation between cube strength, cylinder strength, split tensile strength and modulus of rupture.
- Non-Destructive testing of existing concrete members.

- 1. Properties of Concrete, Neville A. M., Prentice Hall
- 2. Concrete Technology, Shetty M. S., S. Chand and Co.

MRM-101 Research Methodology and IPR

(Credits -3:0:0=3)

Teaching Scheme Lectures: 3 hrs/week Course Outcomes:

On completion of the course, the student will have the ability to:

- 1. Understanding and formulation of research problem.
- 2. Analyze research related information.
- 3. Understand plagiarism and follow research ethics.
- 4. Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- 5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- 6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

Syllabus Content:

Unit 1: Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit 2: Effective literature studies approaches, analysis Plagiarism, Research ethics,

Unit 3: Effective technical writing, how to write report, Paper Developing a Research proposal, Format of research proposal, a presentation and assessment by a review committee

Unit 4: Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit 5: Patent Rights: Scope of Patent Rights, Licensing and transfer of technology, Patent information and databases. Geographical Indications

Unit 6: New Developments in IPR: Administration of Patent System, New developments in IPR; IPR of Biological Systems, Computer Software etc., Traditional knowledge Case Studies, IPR and IITs

- 1. Research methodology: an introduction for science & engineering students, Stuart Melville and Wayne Goddard,
- 2. Research Methodology: An Introduction, Wayne Goddard and Stuart Melville
- 3. Research Methodology: A Step by Step Guide for beginners, Ranjit Kumar
- 4. Resisting Intellectual Property, Halbert, Taylor & Francis Ltd.
- 5. Industrial Design, Mayall, McGraw Hill
- 6. Product Design, Niebel, McGraw Hill
- 7. Introduction to Design, Asimov, Prentice Hall
- 8. Intellectual Property in New Technological Age, Robert P. Merges, Peter S. Menell, Mark A. Lemley
- 9. Intellectual Property Rights Under WTO, T. Ramappa, S. Chand

MAC-102 DISASTER MANAGEMENT

(Credits - 2:0:0 = 0)

Teaching Scheme Lectures: 2 hrs/week Course Outcomes:

On completion of the course, the student will have the ability to:

- 1. know about the various types of disaster and their components.
- 2. know about the measures and precautions at the time of a disaster.
- 3. know about various disaster-prone areas and various concepts about disaster preparedness, GIS and remote sensing.
- 4. assess risk caused by a disaster and learn about various mitigation measures.

Syllabus Content:

- **Introduction:** Disaster Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural And Manmade Disasters: Difference, Nature, Types and Magnitude.
- **Repercussions of Disasters and Hazards**: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem; Natural Disasters Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches; Man-made disasters Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.
- **Disaster Prone Areas in India:** Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards With Special Reference to Tsunami; Post-Disaster Diseases and Epidemics
- **Disaster Preparedness and Management:** Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and Other Agencies, Media Reports: Governmental and Community Preparedness.
- **Risk Assessment:** Disaster Risk Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival
- Disaster Mitigation: Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India

- 1. R. Nishith, Singh A.K, Disaster Management in India: Perspectives, issues and strategies, New Royal book Company
- 2. Sahni P. et al., Disaster Mitigation Experiences and Reflections, Prentice Hall of India
- 3. Goel S.L., Disaster Administration and Management Text and Case Studies, Deep & Deep Publication Pvt. Ltd.